翻訳と辞書
Words near each other
・ Vermilion Bay
・ Vermilion Bay (Louisiana)
・ Vermilion Bay Airport
・ Vermilion Bay Water Aerodrome
・ Vermilion Bay, Ontario
・ Vermilion Bird
・ Vermilion Block 380 platform
・ Vermilion border
・ Vermilion box
・ Vermilion cardinal
・ Vermilion Catholic High School
・ Vermilion Cliffs
・ Vermilion Cliffs National Monument
・ Vermilion Coast Tracks
・ Verma Malik
Verma module
・ Verma Panton
・ Verma, Møre og Romsdal
・ Vermaak
・ Vermaaklikheid
・ Verman
・ Verman River
・ Vermand
・ Vermandel
・ Vermandois
・ Vermandovillers
・ Vermandovillers German war cemetery
・ Vermaport
・ Verme
・ Vermeer (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Verma module : ウィキペディア英語版
Verma module
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.
Verma modules can be used to prove that an irreducible highest weight module with highest weight \lambda is finite-dimensional, if and only if the weight \lambda is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds.
==Definition of Verma modules==
The definition relies on a stack of relatively dense notation. Let F be a field and denote the following:
* \mathfrak, a semisimple Lie algebra over F, with universal enveloping algebra \mathcal(\mathfrak).
* \mathfrak, a Borel subalgebra of \mathfrak, with universal enveloping algebra \mathcal(\mathfrak).
* \mathfrak, a Cartan subalgebra of \mathfrak. We do not consider its universal enveloping algebra.
* \lambda \in \mathfrak^
*, a fixed weight.
To define the Verma module, we begin by defining some other modules:
* F_\lambda, the one-dimensional F-vector space (i.e. whose underlying set is F itself) together with a \mathfrak-module structure such that \mathfrak acts as multiplication by \lambda and the positive root spaces act trivially. As F_\lambda is a left \mathfrak-module, it is consequently a left \mathcal(\mathfrak)-module.
* Using the Poincaré–Birkhoff–Witt theorem, there is a natural right \mathcal(\mathfrak)-module structure on \mathcal(\mathfrak) by right multiplication of a subalgebra. \mathcal(\mathfrak) is naturally a left \mathfrak-module, and together with this structure, it is a (\mathfrak, \mathcal(\mathfrak))-bimodule.
Now we can define the Verma module (with respect to \lambda) as
: M_\lambda = \mathcal(\mathfrak) \otimes_)} F_\lambda
which is naturally a left \mathfrak-module (i.e. a representation of \mathfrak). The Poincaré–Birkhoff–Witt theorem implies that the underlying vector space of M_\lambda is isomorphic to
: \mathcal(\mathfrak_-) \otimes_F F_\lambda
where \mathfrak_- is the Lie subalgebra generated by the negative root spaces of \mathfrak.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Verma module」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.